

CSUK’s

Algorithm Writing Guide

& Workbook
With AQA’s Pseudocode Support

ComputerScienceUK.com CSUK:Teacher

2 Computer Science UK Membership Site Licence: Do not share outside of your centre

ComputerScienceUK.com CSUK:Teacher

3 Computer Science UK Membership Site Licence: Do not share outside of your centre

ComputerScienceUK.com CSUK:Teacher

4 Computer Science UK Membership Site Licence: Do not share outside of your centre

Introduction

Algorithm writing can feel very daunting for a number of reasons. Not only are you required to

understand how programs are structured and organised, you also need to be able to understand

the problems in question, and understand how to break these problems down, so that logical

steps can be identified, to help build a solution.

But fear not, because this workbook has been designed to remedy these issues!

The chapters in this workbook introduce you to generic programming constructs, individually, so

that you can focus on mastering the ability to form algorithmic solutions using these constructs in

isolation, before being introduced to others.

And only after you have looked at each construct in isolation, will you begin to experience

questions which require combinations of these constructs, at which point you will have had the

prior success and built enough confidence, to tackle them.

Ultimately, when it comes to algorithm writing, the more you practice, the easier it becomes! And

this is made easier still, if you regularly practice your programming skills in the language that you’re

studying!

Who is this workbook for?

The following workbook is designed to support all students studying Computer Science at GCSE

(and A-Level), across all UK exam boards.

Algorithm writing is a major aspect of all CS courses, whether it’s directly examined in written

examinations, or indirectly examined in project planning, and as such this workbook will be

invaluable to all regardless of the exam board they are studying.

AQA’s Pseudocode & Other Exam Boards?

If examples are provided in AQA’s Pseudocode, is this workbook therefore not suitable for those

studying other exam boards?

Regardless of the exam board being studied, this workbook is designed to help students

understand generic programming constructs, develop skills in decomposition and write well

organised and well-structured algorithmic solutions.

At the end of the day, AQA pseudocode is not a real language and as such can simply be

considered as a way to write logic in a generalised text-based way.

Using AQA’s pseudocode as the basis for the construction of example algorithms in this workbook,

provides consistency when demonstrating logical solutions.

Depending on the exam board being studied and how teachers wish to use this workbook,

getting students to follow the provided syntax ‘verbatim’, is not necessarily important.

ComputerScienceUK.com CSUK:Teacher

5 Computer Science UK Membership Site Licence: Do not share outside of your centre

Sample Topic

Data Structures/Arrays

ComputerScienceUK.com CSUK:Teacher

6 Computer Science UK Membership Site Licence: Do not share outside of your centre

Data Structures - Arrays

Quick Reference

Construct Setup Example

Arrays

Declaration / Assignment animals  […,…,…]

table  [[…,…],[…,…]…]

animals  ["Pig", "Goat", "Cow"]
This 1D array is declared, and assigned values.

table  [[2,5],[7,3],[9,4]]
This 2D array is declared, and assigned values

Updating Elements animals[…]  …

table[…][…]  …

animals[3]  "Sheep"
Index 3 of this 1D array is updated with value “Sheep”

table[1][0]  14
Index 1, 0 of this 2D array is updated with value 14

Accessing Elements animals[index]

table[index][index]

value  animals[2]
value is assigned the element at index 2 of this 1D array

value  table[1][1]
value is assigned the element at index 1,1 of this 2D array

Arrays are 0 indexed (e.g.: first element will have the index ‘zero’)

Arrays only store a single data type (e.g.: all strings or all integers, but not a mixture)

Arrays
Arrays are data structures. Unlike variables, which can store a single item of data under a single

identifier (name), an array can store multiple items of data (of the same type), under a single

identifier (name).

For example:

Dimensions

The following array is known as a one-dimensional array:

This means that it contains a single linear list (array) of items.

 However, arrays can have multiple dimensions. What this means is that arrays can in fact contain,

not just one array of items, but an array of arrays of items.

For example, the following array is known as a two-dimensional array:

a_variable  “bus”

an_array  [“bus”, “train”, “car”, “bicycle”]

one_d_array  [“bus”, “train”, “car”, “bicycle”]

two_d_array  [[“bus”, “train”, “car”] , [“plane”, “helicopter”, “glider”]]

ComputerScienceUK.com CSUK:Teacher

7 Computer Science UK Membership Site Licence: Do not share outside of your centre

As you can see, this array contains an array of arrays. The first array contains types of land-based

transport and the second contains types of air-based transport, with both arrays being stored in

an array themselves.

Array Indexes

Each item of an array is given an index, which really just means a position number. What is

important to recognise is that array indexes often begin at zero. This means that the first item of an

array is given the position number 0, the second item given the position number 1 and so on.

One Dimensional Array Indexes

Here is an example of the indexes of items inside a one-dimensional array:

one_d_array  [“bus”, “train”, “car”, “bicycle”]

The item at index 2 is ‘car’ because it is at position 3 (but we start counting from zero!).

Two-Dimensional Array Indexes

Because two dimensional arrays effectively consist of ‘arrays inside an array’, the index of each

item actually consists of 2 values. The first value is the index of the array that it is contained within.

The second value is the index of its own position within that array.

Here is an example of the indexes of items inside a two-dimensional array:

two_d_array  [[“bus”, “train”, “car”] , [“plane”, “helicopter”, “glider”]]

The item at index 1,2 is therefore ‘glider’, because ‘glider’ is contained within the second array

(which has the index 1) and is the 3rd item in that array (which has the index 2).

Declaring Arrays

When we use arrays in our algorithms, we will first need to declare them and assign them with

data. What this means is that before we starting working with them, we will first need to set them

up with a name and size, with a number of items that it holds.

Declaring Pre-Populated Arrays

To declare a prepopulated one-dimensional array, we need to write the name we wish the array

to have, followed by the data that the array holds (written inside square brackets):

If the data is to be of type string, we will need to make sure we contain each string inside quotes.

If the data is to be of another type, for example an integer, we must not use quotes.

0 1
|

2 3

|

0,0 0,1 0,2 1,0 1,1 1,2

landBasedTransport  [“bus”, “train”, “car”, “bicycle”]

ComputerScienceUK.com CSUK:Teacher

8 Computer Science UK Membership Site Licence: Do not share outside of your centre

To declare a prepopulated two-dimensional array, we do the same, but the data will be

contained inside subarrays of the array.

Updating Values in the Arrays

To show the updating of elements in arrays, we simply need to state the array name and index in

which the item is to be updated.

For example:

…would assign the value “chair” into a one-dimensional array called ‘furniture’, at index 5 (which

would be the sixth position of the array).

Similarly:

…would assign the value “Exeter” into a two-dimensional array called ‘cities’, at index 1,4 (which

would be position 5 of the second of the array’s subarrays).

Accessing Items in Arrays

We can access items in arrays, using the item’s index.

For example, in the array landBasedTransport = [“bus”, “train”, “car”, “bicycle”], we can

use landBasedTransport[3] to access the item ‘bicycle’.

And in the array transport = [[“bus”, “train”, “car”],[“plane”, “helicopter”, “glider”]],

we can use transport[0][2] to access the item ‘car’.

transport  [[“bus”, “train”, “car”] , [“plane”, “helicopter”, “glider”]]

furniture[5]  “chair”

cities[1][4]  “Exeter”

ComputerScienceUK.com CSUK:Teacher

9 Computer Science UK Membership Site Licence: Do not share outside of your centre

Algorithm Writing Guidance – Arrays
Consider the algorithm question:

As before, let’s begin by breaking this question down into its component parts. This problem has

arguably 3 main parts to it:

1) Create two-dimensional array with provided data.

2) Set up a loop, which will iterate only for the number of items in the 3rd sub array.

3) Access each item in the 3rd sub array and output it.

Point 1 can be achieved by writing the following array assignment line:

For point 2, we need to create a FOR-IN loop, but we need it to only iterate for the number of

items in the 3rd sub array.

Therefore we will only use the 3rd sub array as the array that we are counting elements of.

Finally, for point 3, we can use the stepper variable animal, which accesses each element in the

3rd sub array, along with a OUTPUT statement to output the value.

Write an algorithm, which declares a two-dimensional array (called ‘animals’), with 3

subarrays, each with 3 elements, prepopulated with the following data:

cow pig sheep

elephant zebra giraffe

rabbit gerbil guinea pig

Using a loop, output each animal contained inside the 3rd sub array.

animals  [[“cow”, “pig”, “sheep”],[“elephant”, “zebra”, “giraffe”],[“rabbit”, “gerbil”, “guinea pig”]]

animals  [[“cow”, “pig”, “sheep”],[“elephant”, “zebra”, “giraffe”],[“rabbit”, “gerbil”, “guinea pig”]]

FOR animal IN animals[2]

 … … … … … … …

ENDFOR

animals  [[“cow”, “pig”, “sheep”],[“elephant”, “zebra”, “giraffe”],[“rabbit”, “gerbil”, “guinea pig”]]

FOR animal IN animals[2]

 OUTPUT animal

ENDFOR

ComputerScienceUK.com CSUK:Teacher

10 Computer Science UK Membership Site Licence: Do not share outside of your centre

Practice Questions - Arrays
Worked Example

Write an algorithm that will declare a one-dimensional array, with 5 elements, then allow the user

to populate the array with 5 inputted strings.

Question 1 Algorithm

Write an algorithm that will declare a

one-dimensional array, prepopulated

with the names of 5 animals. Then use

a loop to output each item of the list.

Question 2 Algorithm

Write an algorithm that will declare a

two-dimensional array, prepopulated

with 10 letters (5 in each subarray) and

then output the 3rd letter in each

subarray.

Question 3 Algorithm

Write an algorithm that will declare an

empty two-dimensional array

containing 5 sub-arrays, each with 5

elements, then allow the user to

populate the subarrays with film

names.

userStrings  [‘’,’’,’’,’’,’’]

FOR i  0 to 4

 OUTPUT “Enter a string”

 string  USERINPUT

 userStrings[i]  string

ENDFOR

A one-dimensional array with 5 elements is declared

Each inputted string is assigned to the

array, in the position/index which reflects

the stepper value i in the loop.

Within the loop, the user is asked

to enter a string, which is stored

in a variable called ‘string’.

A for loop is set up

to iterate 5 times

ComputerScienceUK.com CSUK:Teacher

11 Computer Science UK Membership Site Licence: Do not share outside of your centre

Arrays - Answers

Question 1 Algorithm

Write an algorithm that will declare a

one-dimensional array, prepopulated

with the names of 5 animals. Then use

a loop to output each item of the list.

animals  [“cow”, “pig”, “sheep”, “elephant”, “zebra”]

FOR i  0 to (LEN(animals) – 1)
 OUTPUT animals[i]
ENDFOR

Question 2 Algorithm

Write an algorithm that will declare a

two-dimensional array, prepopulated

with 10 letters (5 in each subarray) and

then output the 3rd letter in each

subarray.

letters  [[“a”,“b”,“c”,“d”,“e”], [“z”,“y”,“x”,“w”,“v”]]

FOR i  0 to (LEN(letters) – 1)
 OUTPUT letters[i][2]
ENDFOR

Question 3 Algorithm

Write an algorithm that will declare an

empty two-dimensional array

containing 5 sub-arrays, each with 5

elements, then allow the user to

populate the subarrays with film

names.

userFilms  [
 [“”,“”,“”,“”,“”],
 [“”,“”,“”,“”,“”],
 [“”,“”,“”,“”,“”],
 [“”,“”,“”,“”,“”],
 [“”,“”,“”,“”,“”]
]
FOR i  0 to (LEN(userFilms) – 1)

FOR j  0 to (LEN(userFilms[i]) – 1)
 OUTPUT “Enter a film: ”
 film  USERINPUT
 userFilms[i][j]  film
ENDFOR

ENDFOR

