1. Explain, using examples, how a decimal number can be represented as a fixed point binary number.

To represent decimal values, the decimal point can be fixed into a given position with the 'usual' place values to the left (representing the whole number part) but with new 'fractional' place values for the fractional part of the number.

$\mathbf{8}$	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1 / 2}$	$\mathbf{1 / 4}$	$\mathbf{1 / 8}$	$\mathbf{1 / 1 6}$
1	0	0	0	0	1	1	0

This binary number therefore represents the denary number 8.375 . This is because after the decimal point, the binary number value is $1 / 4+1 / 8=0.375$, which is added to the whole number part.
2. Convert the following fixed point binary numbers into decimal (in each case 4 bits are given to the integer part and 4 bits to the fractional part of the number):
$11001010=12.625$
$01111011=7.6875$
$11111111=15.9375$
$00010001=1.0625$
3. Convert the following decimal values into fixed point binary (in each answer provide 4 bits to the integer part and 4 bits to the fractional part of the number):
$3.25=00110100$
$5.5=01011000$
$7.1875=01110011$
$10.375=10100110$
4. Explain the issues of using this method to represent fractional values (think range and accuracy)

- The issue with using fixed point binary to represent fractional values in binary is that you have to compromise on range vs accuracy.
- For example, if you decide to have all the bits of a bit representing integer values, it will provide you with a range of 0-255 integers, but no fractional values can
be represented to increase accuracy of the number being represented.
- On the other hand, using 3 bits for the integer part will provide only a range of 0-7 but will enable a fair degree of accuracy with more bits given to the fractional part of the number.

